Exercise-Induced Bronchoconstriction

EIB

- 14 yo boy, freshman in high school
- Complains of shortness of breath 2 minutes into a mile-run in his first gym class
- Same complains in his 2nd gym class
- Parents requesting albuterol inhaler
- No history of asthma
- Normal physical exam

- 20 yo woman who is on the soccer team at a Division 1 college
- Complains of chest tightness and shortness of breath 15 minutes into her practices and games
- No problems when she played soccer in high school
- History of allergic rhinitis with positive skin tests for tree and grass pollens
- No history of asthma

- 16 yo girl who is a junior in high school
- Complains of shortness of breath 3 minutes into each of her first 2 games on the varsity team
- No problems during practices
- No problems in the previous 2 basketball seasons on the freshmen and sophomore teams
- No history of asthma

Definition of EIB

- Exercise-induced bronchoconstriction (EIB) is the transient narrowing of the lowers airways after vigorous exercise
- Occurs in asthmatics and non-asthmatics
- Should not use the term exercise-induced asthma

Duration of EIB Symptoms

- Symptoms begin during or after exercise and usually worsen 5 to 20 minutes after stopping activity
- Some people experience a "late-phase reaction" 4 to 12 hours after exercising

Prevalence of EIB

- EIB is found in:
 - ❖A majority of asthmatics (up to 90%)
 - ❖45% of people with allergic rhinitis
 - ❖50% of elite athletes
 - ❖12% of the general population

Categories of Athletes

- Elite athletes are highly competitive person who train and compete consistently at higher levels
 - Olympians, professional athletes
- Competitive athletes are persons who engage in strenuous aerobic activity at any level from grade school age and older
 - High school teams, travel teams
- Recreational athletes
 - Most of us?
 - "weekend warriors"

EIB in Elite Athletes

- Prevalence higher in swimmers, ice skaters, hockey players
- Evidence of chronic airway inflammation caused by many months or years of intense training and inability to adequately humidify extremely large volumes of air

Etiology of Dyspnea in Athletes (Mix of Elite, Competitive)

- 148 athletes referred to tertiary care center for respiratory complaints with exercise
- 40% have diagnosis of asthma prior to referral
- Diagnoses after evaluation at tertiary center were:
 - ❖ 17% asthma
 - ❖ 70% vocal cord dysfunction
 - **❖** 52% EIB
 - ❖8% EIB plus asthma
 - ❖31% EIB plus vocal cord dysfunction
 - ❖6% asthma plus vocal cord dysfunction

Medications for treating EIB in Elite/ Competitive versus Recreational Athletes

• Elite and competitive athletes might require maintenance therapy whereas recreational athletes might only require intermittent therapy

Pathophysiology of EIB

- When we exercise, we need to heat and humidify very large volumes of air
- The most important determinants of EIB are the water content of the inspired air and the level of ventilation
- Respiratory water loss at high ventilation is associated with airway cooling and dehydration and an increase in osmolarity of the airway surface

Pathophysiology of EIB

- Exercise itself is not necessary to cause narrowing to the airways
- Voluntary hyperpnea of dry air can induce bronchoconstriction
- EIB is accompanied by release of mediators such as eosinophil cationic protein, leukotrienes, prostaglandins, and histamine

Diagnosis of EIB

- Self-reported symptoms alone are not reliable for diagnosis of EIB
- Exercise challenge (treadmill or ergometric cycle) is not very sensitive
 - * Environmental conditions in the clinic not the same as where the patients exercise
 - ❖ Field challenge is more sensitive but portable equipment is needed
- Eucapnic voluntary hyperpnea is the preferred test for elite athletes
 - ❖ Elite athletes have high VO₂max
 - ❖ Unable to reach high enough intensity with exercise challenge in clinic
- Hyperosmolar (4.5% saline) challenge might be of value

Criteria for Positive Bronchial Challenge

Medscape®	www.medscape.com	
Protocol Type	Protocol	Criteria
Bronchodilator	FEV_1 pre and post inhalation of permitted β_2 agonist	≥ 12% from the baseline FEV ₁ and exceeding 200 mL
Bronchial provocation	Eucapnic voluntary hyperpnea (6 min of dry air)	≥ 10% decrease in FEV ₁ within 30 min of challenge
	Exercise challenge in the laboratory or field (heart rate > 85% for at least 4 min)	≥ 10% decrease in FEV ₁ within 30 min of challenge.
	Hypertonic aerosol (22.5 mL of 4.5 gm % saline)	\geq 15% decrease in FEV ₁
	Metacholine test (inhalation of solution 4 mg·mL ⁻¹ —PC20)	$\geq 20\%$ decrease in FEV_1
	Source: Med Sci Sports Exerc © 2007 Ar	merican College of Sports Medicine

Exercise Challenge and FEV1

Equipment for Eucapnic Voluntary Hyperpnoea Test

^{1,} Compressed gas mixture; 2, regulator; 3, demand resuscitator, 30–150 litres/min; 4, high pressure tubing; 5, demand valve; 6, rotameter, 30 to >200 litres/min; 7, meteorological balloon, 100–300 g or a Douglas Bag of 150 litres capacity; 8, metal connector with tap that allows gas to simultaneously enter and leave the balloon (for example, Morgan PKM 90750105 000); 9, low resistance, low dead space volume; 10, gas meter accurate to 1 litre or any other device; 11, hoses, minimum diameter 1.25 inches.

A subject is shown undergoing a eucapnic voluntary hyperpnoea challenge

Anderson S D et al. Br J Sports Med 2001;35:344-347

Differential Diagnosis of EIB

- Exercise-induced laryngeal dysfunction
 - **❖** Vocal cord dysfunction
- Exercise-induced hyperventilation
- Skeletal defects (pectus excavatum)
- Diaphragmatic paralysis
- Physiologic limitation
- Psychological factors

Treatment of EIB Beta-2 Agonists

- In asthmatics, ensure optimal control of asthma
- For patients with EIB:
 - ❖Beta-2 agonists are the most effective
 - ❖Inhaled short acting Beta-2 agonists before exercise and after exercise if symptoms occur
 - Long acting Beta-2 agonists provide protection for up to 12 hours

Treatment of EIB Beta-2 Agonists

- Be cautious in daily use of beta-2 agonists
- Daily use can lead to tolerance manifested as a reduction in duration, magnitude, or both of protection against EIB and a prolongation of recovery in response to SABAs after exercise

Treatment of EIB Leukotriene Inhibitors

- Montelukast or zafirlukast
- Daily therapy with leukotriene inhibitors does not lead to tolerance
- Has been shown to attenuate EIB in 50% of patients
- Can be used for intermittent (taken in hour before exercise) or maintenance prophylaxis
- Not effective for reversing airway obstruction

Treatment of EIB Mast Cell Stabilizers

- Consider inhaled cromolyn 20 minutes before exercise
- Shorter duration of action than beta-2 agonists
- No bronchodilator activity
- Can also be added on if beta-2 agonists not completely effective

Treatment of EIB Inhaled Corticosteroids (ICS)

- Consider ICS in combination with other therapies
- ICS can decrease frequency and severity of EIB but not necessarily eliminate it
- ICS might not prevent the occurrence of tolerance from daily beta-2 agonist use

Treatment of EIB Anticholinergic Agents

- Consider inhaled ipratropium for patients who have not responded to other agents
- Its ability to attenuate EIB is inconsistent

Treatment of EIB Other Medications

- Theophylline
- Roflumilast (phosphodiesterase 4 inhibitor)
- Caffeine
- Antihistamines
- Calcium channel blockers

Treatment of EIB Non-pharmacologic Therapy

- Pre-exercise warm-up
- Diet
 - Reduction of sodium intake
 - Fish oil
 - Ascorbic acid (vitamin C)

- 14 yo boy, freshman in high school
- Complains of shortness of breath 2 minutes into a mile-run in his first gym class
- Same complains in his 2nd gym class
- Parents requesting albuterol inhaler
- No history of asthma
- Normal physical exam

- 20 yo woman who is on the soccer team at a Division 1 college
- Complains of chest tightness and shortness of breath 15 minutes into her practices and games
- No problems when she played soccer in high school
- History of allergic rhinitis with positive skin tests for tree and grass pollens
- No history of asthma

- 16 yo girl who is a junior in high school
- Complains of shortness of breath 3 minutes into each of her first 2 games on the varsity team
- No problems during practices
- No problems in the previous 2 basketball seasons on the freshmen and sophomore teams
- No history of asthma